

Sessione Congiunta SIMDO - FADOI

Acido urico e diabete: quando e come correggere

Giovanni Gulli ASL CN1 SC Medicina Interna Ospedale Maggiore SS. Annunziata Savigliano, CN

Agenda

- uric acid (UA) metabolism
- UA and evolution
- UA and type 2 diabetes (T2DM): is there a link?
- when to treat
- how to treat

Agenda

- UA metabolism
- UA and evolution
- UA and T2DM: is there a link?
- when to treat
- how to treat

UA metabolism

• UA is formed from the breakdown of nucleic acids and is an end product of purine metabolism N

- UA is transported by the plasma from the liver to the kidney, where it is filtered, reabsorbed, and excreted in urine
- The remainder of UA is excreted into the GI tract

Biochemistry of UA and its homeostasis

Uricase and UA metabolism

PLoS ONE 2013; 8(5): e64292

Giovanni Gulli, 2017

1

Gout: a disease of the blessed or a blessing in disguise?

"The patient goes to bed and sleeps quietly until about two in the morning when he is awakened by a pain which usually seizes the great toe, but sometimes the heel, the calf of the leg or the ankle

... so exquisitely painful as not to endure the weight of the clothes nor the shaking of the room from a person walking briskly therein."

Agenda

- UA metabolism
- UA and evolution
- UA and T2DM: is there a link?
- when to treat
- how to treat

Survival advantage of the loss of uricase

The loss of uricase during the Miocene era may have provided a survival advantage by:

- •Endogenous adjuvant during immune presentation and inflammation *
- •Higher antioxidant capacity and greater longevity
- $\ensuremath{\cdot}\ensuremath{\mathsf{Volume}}$ and blood pressure control during low salt ingestion $\ensuremath{^*}$
- Accumulation of fat stores *
- Neuroprotection

UA is the danger signal that acts as endogenous adjuvant when tissue is injured during immune presentation

UA activates the NALP3 Inflammasome: macrophage generation of IL-1 for cellular secretion

.S.L. CN1

UA and salt-sensitivity

Hypertension 2002;40:355-360

Giovanni Gulli, 2017

1

UA and lipogenic pathways

1

UA and lipogenic pathways (cont)

- AMPD counters the effects of AMP-activated protein kinase (AMPK)
- Whereas activation of AMPK in hepatocytes induces oxidation of fatty acids and ATP generation, AMPD has opposite effects
- Overexpression of AMPD blocks fatty acid
 oxidation and increases fat accumulation
- The mechanism is mediated in part by the generation of UA, which inhibits AMPK

UA and gluconeogenesis

FASEB J. 2014;28:3339-3350

Giovanni Gulli, 2017

/

Metformin, AMPK and 2DM

- Activation of AMPK by Met reduces protein synthesis, enhances glucose uptake, stimulates mitophagy and mitogenesis, activates autophagy, and significantly reduced intracellular ROS levels
- Activation of SIRT1 by Met protects the cells from metabolic memory through at least two mechanisms: suppressing the cellular inflammatory gene NF-kB and attenuating the expression of the cellular apoptosis gene Bax

Agenda

- UA metabolism
- UA and evolution
- UA and T2DM: is there a link?
- when to treat
- how to treat

Potential UA-T2DM link

The loss of uricase during the Miocene era may have provided a survival advantage by:

•Endogenous adjuvant during immune presentation and inflammation *

•Higher antioxidant capacity and greater longevity

•Blood pressure control during low salt ingestion *

Accumulation of fat stores *

•Neuroprotection

UA and T2DM: is there a link? Yes!

- Inflammation
- Hypertension
- Fat accumulation
- Reduced glucose uptake
- Increased gluconeogenesis

UA predicts the development of MS and T2DM

Location	Population	End point	F/U	Independent	Year	First Author
Israel	10,000 men	diabetes	5 years	Yes	1975	Medalie
U.S.	5,209 adults	diabetes	26 years	Men	1985	Brand
Naura	266 adults	diabetes	6 years	Women	1985	Balkau
Sweden	766 men	type 2 diabetes	13.5 years	Yes	1988	Ohlson
Britain	7,735 men	NIDDM	12.8 years	Yes	1995	Perry
Kinmen (China)	654 high risk	diabetes	3 years	Yes	1998	Chou
Mauritius	2,605 adults	IGT or diabetes	5 years	Yes	2000	Boyko
Japan	6,356 men	type 2 diabetes	9 years	No	2001	Taniguchi
Germany	6,166 adults	type 2 diabetes	3–14 years	Women	2002	Meisinger
U.S.	9,020 adults	↑insulin	11 years	Yes	2003	Carnethon
Japan	2,310 men	IFG or diabetes	6 years	Yes	2003	Nakanishi
Kinmen (China)	641 adults	IFG or diabetes	7 years	Women	2004	Lin
U.S.	60 adults with MI	↑insulin	6 months	Yes	2005	Nakagawa
Finland	522 high risk	type 2 diabetes	4.1 years	No	2006	Niskanen
Netherlands	4,536 adults	type 2 diabetes	10 years	Yes	2008	Dehghan
Mauritius	4,259 adults	diabetes	5 years	Men	2008	Nan
China	2,609 adults	type 2 diabetes	9 years	Yes	2008	Chien
U.S.	9,689 adults	met syn	5.7 years	Yes	2008	Sui
U.S.	566 high risk	type 2 diabetes	13 years	Yes	2009	Kramer
U.S.	9,175 adults	type 2 diabetes	26–28 years	Yes	2010	Bhole
Korea	4,779 men	met syn	3 years	Yes	2011	Ryu
Japan	12,643 adults	IFG and diabetes	5 years	Women	2011	Yamada
China	924 adults	type 2 diabetes	3.5 years	Yes	2011	Wang
Italy	758 adults/BP	type 2 diabetes	3 years	Yes	2011	Viazzi

Uric acid and endothelial dysfunction

UA and T2DM: is there a link?

ON THE COMMON ORIGIN OF DIABETES AND THE URIC ACID DIATHESIS. BY DR. DEBOUT D'ESTREES, OF CONTREXÉVILLE.

THAT diabetes and the uric acid diathesis have a common origin is not a new idea. The subject has been discussed by many writers, some upholding, others opposing, the theory. My own experience classes me with the first, because in all the cases of diabetes brought under my notice at Contraxéville since my appointment in 1868 I have seen the sugar during treatment give place to an excretion of uric acid.

Polarimeter or polariscope.

The examination of each sample of urine has on every occasion been carefully made by myself with both microscope and polarimeter (see Fig. 1), the latter instrument giving the proportion of contained sugar with the greatest

Dr. Marchal de Calvi, in a work published in 1864, writes: "The most obvious factor in the morbid processus of diabetes is the influence of the uric acid diathesis," and my experience at Contrexéville leads me more than ever to share his opinions as to the connexion of diabetes with gout.

Conclusion

- The possibility has been raised that high uric acid levels might contribute to the development of hypertension, metabolic syndrome and atherosclerosis
- Determining cause and effect of high uric acid levels and its comorbidities, and elucidating the mechanisms underlying these epidemiological associations, is not trivial and at this point is unresolved

SUA target and management of gout

Management of asymptomatic hyperuricaemia

- Asymptomatic hyperuricemia (AH) is a common clinical condition associated with increased risk for gout and other urate crystal-related clinical events
- AH is also associated with cardiovascular, metabolic, and renal disease, although the clinical significance and causal relationship of these associations remain the subject of controversy
- Pharmacologic treatment of AH is not recommended, but management includes further evaluation and lifestyle changes known to reduce serum urate

A new paradigm of T1DM nephropathy

Sessione Congiunta SIMDO - FADOI

Acido urico e diabete: quando e come correggere

Giovanni Gulli ASL CN1 SC Medicina Interna Ospedale Maggiore SS. Annunziata Savigliano, CN

A.S.L.CNI Il dopo Campanini: oltre la corsa c'è di più

Sessione Congiunta SIMDO - FADOI

Acido urico e diabete: quando e come correggere

Giovanni Gulli ASL CN1 SC Medicina Interna Ospedale Maggiore SS. Annunziata Savigliano, CN