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Neuroinflammation: An astrocyte perspective
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Astrocytes are abundant glial cells in the central nervous system (CNS) that play active roles in health and
disease. Recent technologies have uncovered the functional heterogeneity of astrocytes and their extensive in-
teractions with other cell types in the CNS. In this Review, we highlight the intricate interactions between as-
trocytes, other CNS-resident cells, and CNS-infiltrating cells as well as their potential therapeutic value in the
context of inflammation and neurodegeneration.
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INTRODUCTION
Astrocytes are the most abundant glial cells in the central nervous
system (CNS), where they perform a wide range of homeostatic
functions. These functions include, among others, providing
support to other CNS-resident cells such as neurons by buffering
excess neurotransmitters and regulating synaptic and blood-brain
barrier (BBB) function (1–4). Many of these homeostatic functions
are impaired in the context of neurologic disorders. In addition, ac-
tivation states induced on developmentally defined astrocyte popu-
lations (4–10) contribute to the pathology of multiple sclerosis (MS)
(11–21), Alzheimer ’s disease (AD) (21–27), Parkinson’s disease
(PD) (21, 28–32), Huntington’s disease (HD) (21, 33–35), and
other disorders (36, 37). Cell-cell interactions are central modula-
tors of astrocyte homeostatic functions and disease-associated re-
sponses. Therefore, a comprehensive understanding of astrocyte
communication with CNS-resident and CNS-recruited cells is
crucial to define the mechanisms of disease pathogenesis and
develop therapeutic interventions for neurologic diseases.

REACTIVE ASTROCYTES IN NEUROINFLAMMATION
Astrocytes react to acute or chronic pathological stimuli by remod-
eling their morphological, genomic, metabolic, and functional fea-
tures through a process called “reactive astrogliosis” (3, 4). Although
some aspects of reactive astrogliosis are shared across stimuli, the
responses induced in astrocytes vary depending on the specific
stimulus or disease, time, and CNS location involved, resulting in
astrocyte phenotypes with diverse and sometimes opposing roles
in diseases (1–4, 11, 12, 38, 39).

Technical developments including single-cell RNA sequencing
(scRNA-seq) (15, 16, 40–42), spatial transcriptomics (5, 15, 43),
and platforms for the identification of cell-cell interactions (44,
45) have opened new avenues for the study of astrocyte heterogene-
ity in health and disease, identifying astrocyte populations or acti-
vation states on the basis of cell morphology, molecular profile,
cellular function, and cell-cell interactions (46). Because of the
cross-sectional nature of these studies, it is unclear whether many
of these astrocyte subsets constitute developmentally defined astro-
cyte populations (developmentally induced astrocytes) or, instead,
represent multiple activation states induced by different stimuli

(stimulus-induced astrocytes) (4). These uncertainties can only be
resolved with comprehensive lineage tracing studies performed
during development, homeostasis, and in the context of patholo-
gy-linked stimuli. In the meantime, these limitations should be
kept in mind when interpreting reports about astrocyte
heterogeneity.

During homeostasis, astrocyte subtypes exhibit distinct genomic
and functional profiles linked to their location and interactions with
neurons and other cells in the CNS (5, 40, 41, 43, 47–49). However,
in the context of CNS inflammation and neurodegeneration, astro-
cytes adopt cellular states linked to the activation or repression of
specific genomic modules by disease-specific stimuli (4, 50). For in-
stance, a combination of scRNA-seq and proteomics identified as-
trocytes that express tumor necrosis factor–related apoptosis-
inducing ligand (TRAIL) in response to interferon-γ (IFN-γ) pro-
duced by natural killer (NK) cells under homeostatic conditions;
these astrocytes operate in CNS borders to limit inflammation by
inducing T cell apoptosis (16). In contrast, scRNA-seq studies iden-
tified a pathogenic astrocyte state controlled by MAF basic leucine
zipper transcription factor G (MAFG)/methionine adenosyltrans-
ferase 2α (MAT2α) and driven by granulocyte-macrophage
colony-stimulating factor (GM-CSF) produced by proinflammatory
T cells, which promotes CNS pathology in MS and in the murine
experimental autoimmune encephalomyelitis (EAE) model (15).
In PD, astrocyte states linked to neurodegeneration have been iden-
tified on the basis of the expression of vimentin and LIM homeobox
2, as well as the up-regulation of CD44 and genes related to the un-
folded protein response (29, 30). Similarly, Hasel et al. identified
two astrocyte reactivity states after lipopolysaccharide (LPS) admin-
istration. One of these astrocyte states is characterized by an enrich-
ment of the metalloproteinase inhibitor Timp1, suggestive of
neuroprotective and antioxidant functions. The other astrocyte
state is characterized by the expression of genes linked to interferon
signaling, angiogenesis, and antigen presentation (50). Together,
these findings illustrate the heterogeneity of astrocytes in the
context of CNS homeostasis and pathology.

Importantly, more than 97% of astrocyte end feet contact at least
one blood vessel (51), enabling astrocyte membrane channels,
transporters, and receptors to sense and react not only to CNS in-
trinsic cues but also to molecules in the circulation (52). In this
context, cytokines, metabolites, and other cellular products, as
well as environmental factors, such as environmental chemicals
and microbial metabolites, cooperate to modulate astrocyte re-
sponses linked to antigen presentation, costimulation, and apopto-
sis (Table 1). For example, the commensal flora provide small
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molecules that regulate the activity of the aryl hydrocarbon receptor
(AHR) in astrocytes (53, 54), which limits the nuclear factor κB
(NF-κB)–driven expression of proinflammatory cytokines and che-
mokines and, consequently, CNS inflammation (55). Conversely,
the herbicide linuron boosts the activation of the transcription
factors NF-κB and X-box–binding protein 1 (XBP1) in astrocytes
through a sigma receptor 1 (SigmaR1)–inositol–requiring

enzyme-1α (IRE1α)–dependent mechanism. This environmental
chemical-driven pathway boosts the expression of proinflammatory
genes (Il6, Ccl2, Csf2, and Nos2) that contribute to the pathogenesis
in MS and EAE (13) and is actively suppressed by signaling through
themineralocorticoid receptor nuclear receptor subfamily 3 group c
member 2 and its corepressor nuclear receptor corepressor 2 (17).

Table 1. Modulators of astrocyte responses in CNS inflammation. IL-1β, interleukin-1β; ROS, reactive oxygen species; S1P1, sphingosine 1-phosphate receptor
1; NFAT, nuclear factor of activated T cells; MAVs, mitochondrial antivirals; DAMPs, damage-associated molecular patterns.

Category Name Role References

Cytokine IL-1β Induces astrocyte proinflammatory gene expression (13, 15)

TNF-α Induces astrocyte proinflammatory gene expression (13–15)
Induces astrocyte neurotoxic activity

IFN-γ In pathogenic conditions, induces astrocyte pro-inflammatory and
neurotoxic gene expression

(14, 16)

In homeostatic conditions, drives TRAIL expression in astrocytes, inducing
T cell apoptosis

IL-6 Induces astrocyte proinflammatory gene expression (3, 57)

IL-1α + TNF-α + C1q Induces C3 expression in astrocytes (16, 21, 57, 78)

Induces astrocyte production of neurotoxic lipids

Down-regulates homeostatic gene expression

GM-CSF Induces astrocyte proinflammatory gene expression (15, 16)

Suppresses TRAIL expression in astrocytes

DAMPs ROS Boosts NF-κB activation (158)

Myelin Activates NF-κB (159)

Promotes immune cell infiltration

Metabolic molecule LacCer Induces astrocyte proinflammatory gene expression (14, 93)

Interferes with astrocyte metabolic support of neurons

S1P1 Induces astrocyte proinflammatory gene expression (18, 20)

Induces astrocyte neurotoxic activity

Nicotinamide adenine dinucleotide
metabolism

Induces astrocyte proinflammatory gene expression (160)

Environmental
factors

Linuron Boosts XBP1 and NF-κB proinflammatory transcriptional programs (13)

Fine particulate matter (PM2.5) Induces astrogliosis (161)

Induces astrocyte-driven myeloid cell polarization into proinflammatory
phenotypes

Induces astrocyte neurotoxic activity

Intracellular
mediators

NF-κB Activates diverse proinflammatory gene expression (13–15)
(158, 159)

IRE1α-XBP1 Activates diverse proinflammatory gene expression (13)

Promotes EAE development

MAFG/MAT2α Suppresses antioxidant and anti-inflammatory gene expression (15)

STAT3 Drives production of factors involved in tissue repair (3, 57) (25,
37, 56)In EAE, induces proinflammatory gene expression

In AD, promotes disease pathogenesis

In SCI, restricts the spread of inflammatory cells

Calcineurin-NFAT Induces astrocyte proinflammatory gene expression (160)

cPLA2-MAVs Activates NF-κB (14)

Inhibits hexokinase-2–mediated lactate production
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Astrocyte reactivity and specific signaling pathways linked to it
are also differentially modulated across various CNS disorders. For
example, multiple studies highlighted the importance of signal
transducers and activators of transcription 3 (STAT3) signaling in
reactive astrocytes (4, 56). Selective STAT3 inactivation in astrocytes
reduces β-amyloid (Aβ) plaques and improves spatial learning and
memory in the amyloid precursor protein/presenilin 1 model of AD
(25). Moreover, interleukin-6 (IL-6) signaling through STAT3 reg-
ulates astrocytes linked to neurotoxicity during CNS inflammation
(57). However, in the context of traumatic injury, reactive astrocytes
form borders around CNS lesions, which restrict inflammation
(56). Astrocyte-specific STAT3 inactivation impairs locomotor re-
covery and markedly increases proinflammatory gene transcription
in spinal cord injury (SCI), emphasizing the role of STAT3-con-
trolled astrocyte products in CNS repair (37). Thus, STAT3 in astro-
cytes controls CNS inflammation and neurodegeneration in a
context-specific manner.

These findings highlight the need to define the complex interac-
tions existing between STAT3 and other signaling pathways that de-
termine the functional outcome of astrocyte responses. Most
importantly, these studies highlight the heterogeneity of astrocyte
responses in CNS pathology, which include both disease-promoting
and disease-arresting or -resolving responses involving astrocyte in-
teractions with CNS-resident and peripheral cells recruited to the
CNS (Figs. 1 to 3). Therefore, unraveling the mechanisms that reg-
ulate astrocyte responses, subtypes, and states, as well as their inter-
actions with CNS-resident and CNS-recruited cells, holds central
importance to develop efficacious therapies for neurologic diseases.

ASTROCYTE INTERACTIONS WITH CNS-RESIDENT CELLS IN
NEUROINFLAMMATION
Astrocyte interactions with neurons
Astrocyte-neuron interactions have been extensively investigated
(Fig. 1) (58). Astrocytes play important roles in neuronal develop-
ment and synapse maturation (8). In addition, astrocytes modulate
synaptic transmission and circuit function. For example, astrocytes
participate in “tripartite synapses,” functional units formed by astro-
cytic processes and neuronal synapses (59), which enable efficient
astrocyte-neuron bidirectional cross-talk. Astrocytes support syn-
aptic function by secreting synaptogenic factors (60–63), phagocy-
tosing structural synapses (64, 65), and buffering synaptic glutamate
(66). In the context of neurologic diseases, these and other homeo-
static astrocyte functions involved in synaptic support are impaired.
For example, complement C3+ astrocytes induced by microglial
TNF (tumor necrosis factor), IL-1α, and complement component
1q (C1q) lose their expression of synaptogenic factors (60–63)
and phagocytosis receptors (64, 65), resulting in deficits in astro-
cyte-driven synaptogenesis and synaptic pruning, perturbing
circuit rewiring and integrity. Furthermore, in MS and PD, reactive
astrocytes lose the expression of the glutamate reuptake transporters
glutamate transporter 1 and glutamate aspartate transporter 1
(GLAST) (67–69), resulting in increased concentrations of extracel-
lular synaptic glutamate and, consequently, excitotoxicity-driven
neuronal death.

Additional mechanisms mediate astrocyte-neuron communica-
tion. For example, astrocytes metabolize glucose into lactate, sup-
plying it to neurons to support their metabolism. This “lactate
shuttle” is mediated by monocarboxylic acid transporters, whose

expression is not confined to tripartite synapses (70). The metabolic
cross-talk between astrocytes and neurons is perturbed during in-
flammation, boosting neurotoxicity (70). Themetabolic remodeling
of astrocytes induced by proinflammatory cytokines boosts the pro-
duction of lactosylceramide (LacCer), which activates cytosolic
phospholipase A2 (cPLA2). cPLA2 activation triggers its physical
interaction with the CARD domain of mitochondrial antiviral sig-
naling (MAVS) protein, resulting in the activation of NF-κB–driven
proinflammatory responses (14). This cPLA2-MAVS interaction
also displaces hexokinase 2 from its interaction with MAVS, limit-
ing lactate production and further stressing neurons. Similar obser-
vations have been made in HD (71), AD (72), and PD (73),
highlighting the importance of astrocyte-neuron metabolic decou-
pling in CNS inflammation.

In the mature brain, each astrocyte interacts with and maintains
neurons and synapses within a specific territory that does not
overlap with that of neighboring astrocytes (74). Endo and col-
leagues recently reported shrunken astrocyte territories in a preclin-
ical AD model (75). Moreover, they identified Fermt2 and Ezr as
regulators of astrocyte territory. Interestingly, the decreased expres-
sion of these territory-related genes has been detected in several
neurological diseases, including MS and PD, suggesting additional
mechanistic links between impaired homeostatic astrocyte func-
tions and CNS pathology (75). However, the mechanisms involved
in the dysregulation of these homeostatic astrocyte functions are still
not completely understood.

Accumulating evidence of astrocyte-driven neurotoxicity has
been described. NF-κB activation in astrocytes promotes the pro-
duction of neurotoxic nitric oxide (NO) (13, 76). Sajio et al. (32)
reported that down-regulation of nuclear receptor–related factor 1
protein, a PD risk factor, results in the production of neurotoxic NO
and reactive oxygen species. In addition, Bi et al. (77) reported that,
in a model of TDP43 proteinopathy, reactive astrocytes secrete lip-
ocalin2, which is also toxic to neurons. Moreover, microglia-
induced reactive astrocytes present in HD, AD, PD, and MS brain
samples promote neuronal death through the secretion of neurotox-
ic fatty acids (21, 78), suggesting a common mechanism of astro-
cyte-driven disease pathology across neurologic diseases. The
glucagon-like peptide 1 receptor agonist is reported to block the mi-
croglia-driven induction of these neurotoxic astrocytes (79).
However, the existence of disease-specific triggers of astrocyte acti-
vation linked to specific transcriptional and cellular responses sug-
gests that multiple astrocyte states with neurotoxic activity can be
induced. It further suggests that multiple mechanisms of astro-
cyte-driven neurotoxicity may exist, even in the context of the
same disease.

Conversely, reactive astrocyte-driven neuroprotective mecha-
nisms have also been identified. L’Episcopo et al. (80) suggested
that reactive astrocytes are one of the sources of wingless-type
MMTV integration site 1 (Wnt1), which is deeply involved in dop-
aminergic (DAergic) neuron development and recovery. The
authors showed that astrocytes express Wnt1 in response to 1-
methly-4-phenyl1–1,2,3,6-tetrahydropyridine (MPTP)–driven
DAergic neuron degeneration. Astrocyte-produced Wnt1 binds
Frizzled and β-catenin in DAergic neurons, promoting DAergic
neuron survival, repair, and neurogenesis. Further support for the
physiologic relevance of neuroprotective astrocyte mechanisms was
provided by Anderson and colleagues (36), who defined a central
role for reactive astrocytes in axon regeneration in the context of
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SCI, establishing that reactive astrocytes express cspg4 and cspg5,
which support axon growth. Collectively, these findings highlight
the multiple and sometimes opposing roles played by astrocyte-
neuron interactions in the pathology of neurologic diseases. The
generation of astrocyte single-cell datasets in multiple neurologic
diseases and their preclinical models will enable the identification

of common and disease-specific mechanisms operating in astro-
cytes, as illustrated by recent studies by Burda and colleagues
(37). Moreover, the examples mentioned in this section suggest
that, when studying mechanisms of astrocyte-driven neuronal
damage, it is important to differentiate between the active induction
of neurotoxicity and the impairment of astrocyte functions that

Fig. 1. Astrocyte cross-talk with CNS-resident
cells. Astrocytes play a key role in regulating infl-
ammation within the central nervous system
(CNS). As central coordinators, they extensively
interact with other CNS-resident cells. This inter-
play involves the release and modulation of
various cytokines, chemokines, neuromodulators,
and surface molecules, which collectively control
neuroinflammation and neurodegeneration
through the regulation of proinflammatory, toxic,
anti-inflammatory, and regenerative processes.
Upon neuroinflammation, astrocytes start to in-
teract with nearby CNS-resident cells, such as
microglia and oligodendrocytes. Astrocytes bidi-
rectionally communicate with microglia through
cytokines and surface-to-surface interactions,
which not only turn on proinflammatory re-
sponses but also inhibit astrocyte-mediated ho-
meostatic function. In addition, oligodendrocytes
secrete cytokines such as IL-17 and IL-6 to
promote proinflammatory astrocyte activities (top
left, proinflammatory). Conversely, astrocytes can
release several anti-inflammatory factors that
suppress microglial proinflammatory responses.
In addition, microglial cytokines can also suppress
astrocyte proinflammatory activities by inhibiting
NF-κB activation (bottom left, anti-inflammatory).
Astrocytes induce neuronal death by releasing
various factors such as fatty acids, reactive oxygen
species, and LCN2. In addition, astrocyte-mediat-
ed neurotoxicity can occur because of disruptions
in astrocyte homeostatic processes, such as
lactate metabolism and glutamate buffering. Mi-
croglia-derived cytokines further promote astro-
cyte-mediated neurotoxicity (top right,
neurotoxic). Astrocytes are involved in regenera-
tion. OPCs recruited to lesions by astrocyte-se-
creted chemokines differentiate into mature
oligodendrocytes, promoting remyelination. Re-
active astrocytes also induce neuronal growth by
releasing axon growth–supportive CSPGs, such as
CSPG4 and CSPG5 (bottom right, regeneration).
CCR5, C-C chemokine receptor type 5; CNTF,
ciliary neurotrophic factor; CoREST, corepressor of
RE1-silencing transcription factor; CSPG4, chon-
droitin sulfate proteoglycan 4; CSPG5, chondroitin
sulfate proteoglycan 5; Elovl-1, elongation of very
long-chain fatty acids 1; EGFR, epidermal growth
factor receptor; GLT-1, glutamate transporter-1;
GM-CSFR, granulocyte-macrophage colony-stim-
ulating factor receptor; HK2, hexokinase 2; IL-3R,
interleukin-3 receptor; Lcn2, lipocalin-2; MCT,
monocarboxylate transporter; Nos2, nitric oxide
synthetase 2; NURR1, nuclear receptor–related
factor 1 protein; ST2, interleukin 1 receptor–like 1;
TNFRI, TNF receptor type 1.
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support neuron health and survival, both of which may result in
neuronal death in vitro.

Astrocyte interactions with oligodendrocytes
Oligodendrocytes are classically considered the target of inflamma-
tory responses in MS (81), but recent evidence also suggests active
roles for oligodendrocytes in CNS inflammation (Fig. 1). Multiple
cytokines, immune mediators, and their receptors are expressed by
oligodendrocytes. For example, Kim and colleagues (82) reported
that astrocytes promote microglial TNF-α release, which binds
TNF receptor 1 expressed in oligodendrocyte precursor cells
(OPCs) and induces cytotoxicity in a contact-dependent manner.

Conversely, astrocytes have also been shown to play multiple
roles in remyelination (83). OPCs are recruited to CNS lesions in
response to IL-1β and C-C motif chemokine ligand 2 (CCL2) pro-
duced by astrocytes (84). Once at the lesions, OPCs differentiate
into mature oligodendrocytes in response to ciliary neurotrophic
factor (85). Interestingly, the down-regulation of the Nrf2
pathway in astrocytes promotes oligodendrocyte survival and re-
myelination (86). Luteolin, which inhibits Nrf2 signaling, promotes
remyelination, suggesting that astrocyte-oligodendrocyte interac-
tions may offer new targets to treat demyelinating disease.

In addition, oligodendrocytes produce proinflammatory cyto-
kines (e.g., IL-1β, CCL2, IL-17, and IL-6), which promote proin-
flammatory astrocyte responses (1). Moreover, it was recently
reported that oligodendrocytes disrupt the BBB by down-regulating
tight junction proteins during MS pathogenesis (87). This active
BBB disruption is driven by oligodendrocyte competition with as-
trocyte end feet–ensheathing blood vessels. In the light of reports of
age-linked impaired remyelination, it is important to establish
whether astrocyte-oligodendrocyte interactions are perturbed
during aging (88), an important point for the development of ther-
apeutic strategies to promote remyelination, particularly in neuro-
logic diseases where remyelination deficits and disease progression
are linked with aging, such as MS (89).

Astrocyte interactions with microglia
Microglia-dependent developmental synapse pruning is promoted
by IL-33 secreted from astrocytes, highlighting the importance of
astrocyte-microglia cross-talk in neural circuit development
(Fig. 1) (90). In addition, microglial factors regulate astrocyte path-
ogenic activities during CNS inflammation (21, 78, 79). For
example, Bezzi et al. (91) found that microglial TNF-α induces
stromal cell–derived factor 1 (also known as CXCL12)–CXCR4–
driven glutamate release by astrocytes, promoting neuronal death.
Similarly, microglial TNF-α, IL-1α, and C1q were shown to induce a
neurotoxic phenotype in astrocytes (21). Moreover, microglial vas-
cular endothelial growth factor B (VEGF-B) and transforming
growth factor–α (TGF-α) differentially regulate proinflammatory
gene expression in astrocytes during EAE and MS (92). Microglial
VEGF-B promotes VEGF receptor 1 (FLT-1)–driven NF-κB activa-
tion, boosting astrocytic pathogenic activities in EAE. Conversely,
microglial TGF-α limits EAE progression by activating epidermal
growth factor receptor/ErbB1 signaling. Interestingly, themicroglial
production of VEGF-B or TGF-α is regulated by microbial metab-
olites of dietary tryptophan, which cross the BBB and regulate AHR
signaling in microglia and astrocytes (55, 92), providing insights to
the control of CNS-resident cells and their cross-talk by the gut-
brain axis.

Astrocytes can also modulate microglial responses in the context
of CNS pathology. B4GALT6-driven LacCer production induces
GM-CSF secretion by astrocytes, modulating the transcriptional re-
sponse of microglia and CNS-infiltrating monocytes (93). Similarly,
a SigmaR1-IRE1α-XBP1 axis operating in astrocytes drives not only
astrocyte-intrinsic responses that promote CNS pathology but also
microglial pathologic responses through yet-uncharacterized astro-
cyte-microglia communication mechanisms (13). Kiss and col-
leagues (94) recently reported that astrocyte-produced IL-3
induces disease-promoting responses in microglia and monocytes,
contributing to the pathology of MS, although IL-3–driven control
of microglia by astrocytes may limit pathology in AD (95). Con-
versely, Jo et al. (96) reported that astrocytes can suppress microglial
activation in the context of systemic LPS-driven CNS inflammation
through the production of orosomucoid-2 (Orm2). These findings
highlight the complexity of astrocyte-microglia interactions and
identify important roles for IL-3, GM-CSF, and Orm2 in the
control of microglia by astrocytes.

Astrocyte-microglia cross-talk is diverse and complex, with both
pro- and anti-inflammatory outcomes and feedback mechanisms.
To decipher the complexity of astrocyte-microglia interactions, we
designed a forward-genetic screening platform based on the cocul-
ture in droplets of microglia-astrocyte pairs in which genes have
been systematically inactivated in microglia to determine the
effect of this perturbation in astrocytes; we named this platform sys-
tematic perturbation of encapsulated associated cells followed by se-
quencing (SPEAC-seq) (44). In its first iteration, we coencapsulated
transgenic primary astrocytes, which express green fluorescence
protein upon NF-κB activation with microglia transduced with
genome-wide CRISPR-Cas9 library. This approach identified a reg-
ulatory circuit, whereby IL-33 released by astrocytes in the context
of inflammation triggers microglial production of amphiregulin
(AREG), which acts on astrocytes to limit their proinflammatory
responses.

Microglia-astrocyte interactions can also involve physical
contact through membrane-bound molecules. Using rabies
barcode interaction detection followed by sequencing (RABID-
seq) in an EAE model, we identified PlexinB2/1–semaphorin 4D
(Sema4D) and ephrin type B receptor 3 (EphB3)–EphrinB3 signal-
ing as a potential mediator of astrocyte-microglia interactions (45);
these interactions were later validated in human systems. Most im-
portantly, the inactivation of these interactions suppressed micro-
glial and astrocyte proinflammatory responses, highlighting the
potential value of astrocyte-microglia interaction pathways as ther-
apeutic targets for neurologic diseases.

ASTROCYTE-PERIPHERAL IMMUNE CELL INTERACTIONS IN
NEUROINFLAMMATION
Astrocyte interactions with T cells
Astrocytes are major components of the BBB, forming the glia lim-
itans, a barrier that encloses pericytes, endothelial cells, and the
basal lamina, restricting the entry of leukocytes into the CNS
(Fig. 2) (56). However, BBB disruption and dysfunction can
promote leukocyte invasion into the CNS parenchyma as described
in MS, stroke, and AD (97). In this context, astrocytes are one of the
first CNS-resident cells encountered by infiltrating T cells, regulat-
ing not only T cell migration but also activation (56) (Fig. 3). For
example, astrocytes in MS lesions express IL-27, which limits
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proinflammatory T helper 17 (TH17) cell responses while promot-
ing the differentiation of anti-inflammatory type 1 regulatory (Tr1)
cells and FoxP3+ regulatory T (Treg) cells (98–100). Astrocyte IL-27
production has been shown to limit proliferation and cytokine pro-
duction (IFN-γ, IL-17, TGF-β, and IL-4) in myelin-specific T cells
(101). Astrocytes also induce cytotoxic T lymphocyte–associated
protein 4, CD39, and CD73 expression in CD4+ T cells, further lim-
iting their activation (102, 103). Last, astrocytes induce T cell apo-
ptosis through the expression of FasL and TRAIL (16, 104).

Conversely, astrocytes in response to ischemic stroke express IL-
15, which recruits CD8 T cells and boosts their effector function
during brain damage (105). Moreover, astrocytes express major his-
tocompatibility complex (MHC) class II and costimulatory mole-
cules (e.g., CD80 and CD86) in active MS lesions (106, 107), but
the physiological importance of these findings is not fully under-
stood. IFN-γ up-regulatesMHC class II and costimulatorymolecule
expression in primary murine astrocytes in vitro (108–110), but
studies on human fetal astrocytes failed to detect IFN-γ–induced
CD80 (B7-1) and CD86 (B7-2) expression (111). Considering the
protective role of IFN-γ signaling in astrocytes in the context of
CNS inflammation (16, 112), further studies should interrogate
the effects of IFN-γ on the expression of not only MHC but also
cytokines, checkpoint, and other molecules relevant for the regula-
tion of T cell responses.

Astrocytes are an important source of chemokines, such as
CCL1, CCL2, CCL20, and CXCL10 (113–117). NF-κB–driven
CCL2 and CXCL10 expression in astrocytes recruits proinflamma-
tory T cells and monocytes to the CNS, promoting MS and EAE

pathology (113–115, 118). In addition, the activation of the receptor
activator of NF-κB (RANK) in astrocytes by TH17 cell–expressed
RANK ligand triggers the production of CCL20, boosting the re-
cruitment of effector T cells during CNS inflammation (116). Sim-
ilarly, TGF-β–activated kinase 1–driven CXCL1 production
promotes the migration of CXCR2+ CD4 T cells to the spinal
cord gray matter and, consequently, neuronal damage and motor
dysfunction (117). Astrocyte-produced chemokines (CCL1 and
CCL20) also recruit Treg cells in the context of stroke (119).

Importantly, the relationship between astrocytes and T cells is
bidirectional; T cells can also shape astrocyte responses. Astrocytes
express receptors for IL-17 and GM-CSF, cytokines produced by
proinflammatory TH17 cells linked to the pathology of MS, EAE,
and other diseases (15, 120–123). TH17-derived IL-17 was initially
thought to up-regulate NF-κB activator 1 (Act1)–dependent proin-
flammatory cytokine (GM-CSF) and chemokine production
(CXCL1, CXCL2, and CCL20) in astrocytes, boosting leukocyte re-
cruitment to the CNS during EAE (120). However, it was later
found that these effects of IL-17 were mostly associated with
neural/glial antigen 2–expressing glial cells (123). Hence, our un-
derstanding of the effects of IL-17 signaling in the control of astro-
cyte responses is still limited. However, GM-CSF was found to
promote the MAFG/MAT2α-dependent differentiation of proin-
flammatory astrocyte states in MS and EAE (15) while limiting as-
trocyte expression of the inducer of T cell apoptosis TRAIL (16).

In addition, astrocyte interactions with Treg cells have been re-
ported to limit CNS inflammation (124). For instance, CNS-infil-
trating Treg cells suppress neurotoxic astrogliosis during stroke

Fig. 2. Astrocyte cross-talk within the CNS borders. Astrocytes play important roles in the control of the barriers that separate the blood vessels, perivascular spaces,
cerebrospinal fluid (CSF), andmeninges from the CNS parenchyma. In the context of CNS inflammation, these borders become dysfunctional, and astrocytes produce and
secrete awide range of molecules and chemokines to attract circulating peripheral immune cells, including T cells, B cells, NK cells, monocytes, andmacrophages into the
CNS. Mϕ, macrophage; Mo, monocyte, NK, natural killer cells.
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through the production of AREG, a molecule linked to tissue repair
in other tissues such as the gut (119). Moreover, Tr1 cells suppress
pathogenic astrocyte activities through IL-10 in EAE (125, 126). In-
terestingly, astrocyte–T cell interactions are detected in virus-based
barcoded methods designed to study cell-cell communication (45);
future studies using these and other methods are likely to dissect
intricate mechanisms of communication between specific astrocyte
and T cell subsets. Together, these findings highlight the impor-
tance of astrocyte–T cell communication during neuroinflamma-
tory reactions and suggest that T cell subsets induced with
nanomaterials (127–129) or engineered probiotics (130, 131) may
be used for the therapeutic modulation of astrocyte responses.

Astrocyte interactions with mononuclear phagocytes
The recruitment of peripheral mononuclear phagocytes, including
monocytes and dendritic cells, plays important roles in CNS inflam-
mation (Fig. 3) (132). In MS and EAE, astrocyte-derived CCL2 re-
cruits proinflammatory monocytes to the CNS (113, 133, 134).
CCL2 deletion in astrocytes decreases the recruitment and polariza-
tion of proinflammatory monocyte-derived macrophages (133)
linked to demyelination and neuronal death (135). However, astro-
cyte-derived CCL2 can also recruit macrophages that promote
tissue repair (136), suggesting that astrocytes can promote both
proinflammatory and repair mechanisms in a context-specific
manner. In addition, these findings highlight our limited under-
standing of the molecular mechanisms mediating the recruitment

of specific peripheral myeloid cell subsets by astrocytes and the
functional heterogeneity of those subsets.

Astrocyte interactions with NK cells
Distinct immunological niches exist at CNS borders. The meninges,
which envelop the brain and spinal cord, have been identified as an
important site for the communication between peripheral immune
subsets and CNS-resident cells in physiological and pathological
conditions (137, 138). It was recently reported that NK cells circu-
lating through the meninges induce TRAIL expression in homeo-
static astrocytes through the production of IFN-γ, enabling the
apoptosis of proinflammatory T cells that express death receptor
5. Of note, NK cells circulating through the meninges acquire the
ability to produce IFN-γ in intestinal tissue in response to signals
provided by the commensal flora (Fig. 3). These findings identify
a mechanism used by the gut-CNS axis to control inflammation
(139), which not only sheds light on the potential role of the micro-
biome in the pathology of neurologic diseases but also offers excit-
ing opportunities for therapeutic intervention.

Conversely, astrocytes modulate the activity of NK cells. For
example, IL-15 overexpression in astrocytes (glial fibrillary acidic
protein–IL-15tg) exacerbates ischemic brain injury, in part, as a
result of increased NK cell–mediated immune responses (Fig. 3)
(105). Collectively, these findings highlight the importance of astro-
cyte-NK cell cross-talk in the context of CNS homeostasis and pa-
thology, calling for additional studies on the roles of specific NK cell
subsets (140) in these interactions.

Fig. 3. Astrocyte cross-talk with peripheral immune cells. Upon crossing CNS barriers, soluble factors and cell-cell communications mediate astrocytes and leukocyte
interactions by shaping the transcriptional programs of these cells, either alleviating or aggravating neuroinflammation and neurodegeneration. Astrocytes express TRAIL
and FasL, promoting T cell apoptosis. In addition, astrocytes limits T cell responses while promoting the differentiation of Tr1 cells and Treg cells through the production of
IL-27. Tr1 cells and Treg cells regulate pathogenic activities of astrocytes by cytokines such as IL-10 and AREG (left). Conversely, astrocytes can boost effector functions of
peripheral immune cells including NK cells and CD8 T cells through the production of IL-15. TH17 cells promote pathogenic activities of astrocytes by expressing RANKL
and GM-CSF (right). IFNGR, interferon-γ receptor; IL-10R, interleukin-10 receptor; IL-15R, interleukin-15 receptor; IL-27R, interleukin-27 receptor.
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Astrocyte interactions with B cells
B cells play fundamental roles in CNS homeostasis and pathology,
as highlighted by the success of treatments targeting B cells in MS
and other neurologic diseases (141). In MS plaques, astrocytes
produce B cell activation factor, which plays crucial roles in the de-
velopment and survival of B cells, as well as antibody production
(142). Secreted factors produced by human astrocytes promote
the survival and activation of B cell subsets, including memory B
cells from patients with secondary progressive MS (143). In MS
and stroke, astrocytes are also reported to secrete CXCL12 (144,
145), which promotes plasma cell maintenance and survival, sug-
gesting a role of astrocytes in the control of pathogenic B cells in
the CNS (146).

B cell products also affect astrocyte function and survival. Anti-
bodies reactive with aquaporin 4 drive the pathology of neuromye-
litis optica through the induction of astrocyte dysfunction and death
(147, 148). Moreover, it was recently reported that B cells in MS
produce antibodies reactive with glial cell adhesion molecule (Glial-
CAM), an immunoglobulin-like cell adhesion molecule expressed
by glial cells, including astrocytes (149). Although the effects of
GlialCAM-reactive antibodies on astrocytes are still unknown,
these findings suggest additional roles for astrocytes (or their
demise) in MS. Moreover, these findings suggest additional roles
for astrocyte–B cell interactions in neurologic diseases. Interesting-
ly, gut-derived immunoglobulin A–producing B cells have been re-
ported to attenuate CNS inflammation (150, 151) and also to
produce IL-10, a cytokine known to limit disease-promoting astro-
cyte activities inMS and EAE (125, 150). Thus, future studies should
go beyond the pathogenic effects of astrocyte-reactive antibodies to
interrogate the modulation of astrocyte function by B cells and their
products, as well as its relevance for the gut-CNS axis in health
and disease.

CONCLUSION AND FUTURE PERSPECTIVES
Cell-cell interactions play central roles in the control of astrocyte
function in health and disease. These interactions are perturbed
in neurologic disorders and potentially represent important
targets for therapeutic intervention. Hence, it is important to inter-
rogate cell-cell interactions with unbiased and comprehensive ap-
proaches. RABID-seq (45), SPEAC-seq (44), and spatial
transcriptomics (152), for example, provide unique opportunities
to interrogate the disease-associated connectome of astrocytes and
other cells of interest, even outside of the CNS.

An important and related challenge is to select adequate modal-
ities for connectome-targeted therapeutic interventions. CNS-pen-
etrant small molecules offer unique opportunities as therapeutic
agents (14, 18, 20, 45, 79). For instance, the CNS-penetrant small
molecule A38 has been shown to limit CNS inflammation by inhib-
iting EphB3 receptor signaling, which was identified as a mediator
of astrocyte-microglia interaction in EAE and MS (45). In addition,
viral vector–based gene therapy approachesmay provide unique op-
portunities for the therapeutic targeting of CNS cell-cell interac-
tions (153). Recent advances in adeno-associated virus (AAV)
platforms led to the development of BBB-penetrating AAV
capsids (154). Similarly, antibodies, a tool of choice for the specific
modulation of pathways of interest, can be engineered to increase
their CNS permeability (155), maximizing target engagement.
Last, the important role of the gut-brain axis in the regulation of

CNS-resident cells suggests that it can be targeted to limit pathogen-
ic responses of CNS-resident cells. In this context, engineered pro-
biotics provide new tools to limit CNS pathology (156, 157).
However, important technical challenges remain associated with
each of these modalities as related to the specificity of small mole-
cule, the induction of unwanted immune responses by viral vectors
and their long-term effects, and the CNS permeability of therapeu-
tic antibodies. Moreover, important questions remain to be ad-
dressed for the development of efficacious therapies targeting the
connectome of astrocytes and other cells in the CNS: (i) Are there
common perturbations of cell-cell interaction mechanisms shared
by multiple neurologic diseases? (ii) How do we specifically target
subtypes and states of astrocytes or other cell types to reestablish
their homeostatic functions and suppress their pathogenic activi-
ties? (iii) Which cell-cell interactions can we target to promote
repair in the CNS, and how are those mechanisms affected by
aging? Addressing these and other related questions will pave the
way for the development of efficacious connectome-targeted thera-
pies for neurologic disorders.
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